Availability: Out of Stock
0.0 / 5
Publisher | Cambridge University Press |
ISBN-13 | 9781107057135 |
ISBN-10 | 9781107057135 |
Binding | Hardcover |
Number of Pages | 410 Pages |
Language | (English) |
Weight (grms) | 910 |
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.
Shai Shalev-Shwartz
,Shai Ben-Davi
Cambridge University Press