Publisher |
Shroff/O'Reilly |
Publication Year |
2021 |
ISBN-13 |
9789355420374 |
ISBN-10 |
9789355420374 |
Binding |
Paperback |
Number of Pages |
460 Pages |
Language |
(English) |
Dimensions (Cms) |
20X14X4 |
Weight (grms) |
700 |
Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.
Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start.
You'll discover how to:
Apply DevOps best practices to machine learning
Build production machine learning systems and maintain them
Monitor, instrument, load-test, and operationalize machine learning systems
Choose the correct MLOps tools for a given machine learning task
Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware
Noah Gift
Noah Gift is the founder of Pragmatic AI Labs. Noah Gift lectures at MSDS, at Northwestern, Duke MIDS Graduate Data Science Program, and the Graduate Data Science program at UC Berkeley and the UC Davis Graduate School of Management MSBA program, and UNC Charlotte Data Science Initiative. He is teaching and designing graduate machine learning, A.I., Data Science courses, and consulting on Machine Learning and Cloud Architecture for students and faculty. These responsibilities include leading a multi-cloud certification initiative for students.
Noah Gift
Shroff/O'Reilly