Python for DevOps: Learn Ruthlessly Effective Automation

Author :

Noah Gift

Publisher:

Shroff/O'Reilly

Rs2000

Availability: Available

Shipping-Time: Usually Ships 5-9 Days

    

Rating and Reviews

0.0 / 5

5
0%
0

4
0%
0

3
0%
0

2
0%
0

1
0%
0
Publisher

Shroff/O'Reilly

Publication Year 2020
ISBN-13

9789352139583

ISBN-10 9789352139583
Binding

Paperback

Number of Pages 508 Pages
Language (English)
Dimensions (Cms) 20X14X4
Weight (grms) 800
Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project

Noah Gift

Noah Gift is the founder of Pragmatic AI Labs. Noah Gift lectures at MSDS, at Northwestern, Duke MIDS Graduate Data Science Program, and the Graduate Data Science program at UC Berkeley and the UC Davis Graduate School of Management MSBA program, and UNC Charlotte Data Science Initiative. He is teaching and designing graduate machine learning, A.I., Data Science courses, and consulting on Machine Learning and Cloud Architecture for students and faculty. These responsibilities include leading a multi-cloud certification initiative for students.
No Review Found
More from Author